X-ray diffraction "fingerprinting" of DNA structure in solution for quantitative evaluation of molecular dynamics simulation.
نویسندگان
چکیده
Solution state x-ray diffraction fingerprinting is demonstrated as a method for experimentally assessing the accuracy of molecular dynamics (MD) simulations. Fourier transforms of coordinate data from MD simulations are used to produce reciprocal space "fingerprints" of atomic pair distance correlations that are characteristic of the ensemble and are the direct numerical analogues of experimental solution x-ray diffraction (SXD). SXD experiments and MD simulations were carried out to test the ability of experiment and simulation to resolve sequence-dependent modifications in helix conformation for B-form DNA. SXD experiments demonstrated that solution-state poly(AT) and poly(A)-poly(T) duplex DNA sequences exist in ensembles close to canonical B-form and B'-form structures, respectively. In contrast, MD simulations analyzed in terms of SXD fingerprints are shown to deviate from experiment, most significantly for poly(A)-poly(T) duplex DNA. Compared with experiment, MD simulation shortcomings were found to include both mismatches in simulated conformer structures and number population within the ensembles. This work demonstrates an experimental approach for quantitatively evaluating MD simulations and other coordinate models to simulate biopolymer structure in solution and suggests opportunities to use solution diffraction data as experimental benchmarks for developing supramolecular force fields optimized for a range of in situ applications.
منابع مشابه
Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods
Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملMolecular Dynamics and X-Ray Diffraction Study of Aqueous Beryllium(II) Chloride Solutions
A structural investigation o f a 1.1 molal BeCl2 aqueous solution has been performed by a molecular dynamics simulation together with X-ray diffraction studies o f 1.1 and 5.3 molal BeCl2 aqueous solutions at pH = \. A central force model in combination with an improved intra molecular three-body potential was used for water. The ion-water and ion-ion potentials were derived from ab initio cal...
متن کاملEVALUATION OFDISLOCATION STRUCTURE AND CRYSTALLITE SIZE IN WORN AL-SI ALLOY BY X-RAY DIFFRACTION
Abstract: powerful method for the characterization of microstructures of crystalline materials in terms of crystallite size anddislocation structures. In this paper the effect of the sliding on the microstructure of A356 in the as-cast and heattreated conditions are studied, The X-ray phase analysis shows that with increasing applied load, the dislocationdensity is increased, whereas the crysta...
متن کاملComparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation
Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 10 شماره
صفحات -
تاریخ انتشار 2006